14 research outputs found

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Optimal conclusive teleportation of a d-dimensional unknown state

    Get PDF
    We formulate a conclusive teleportation protocol for a system in d-dimensional Hilbert space utilizing the positive operator valued measurement at the sending station. The conclusive teleportation protocol ensures some perfect teleportation events when the channel is only partially entangled, at the expense of lowering the overall average fidelity. We find the change of the fidelity as optimizing the conclusive teleportation events and discuss how much information remains in the inconclusive parts of the teleportation.Comment: 7 pages, 1 figure; figure correcte

    Teleportation of a Zero-and One-photon Running Wave State by Projection Synthesis

    Full text link
    We show how to teleport a running wave superposition of zero- and one-photon field state through the projection synthesis technique. The fidelity of the scheme is computed taking into account the noise introduced by dissipation and the efficiency of the detectors. These error sources have been introduced through a single general relationship between input and output operators.Comment: 11 pages, 1 figur

    Complete population transfer in a degenerate 3-level atom

    Full text link
    We find conditions required to achieve complete population transfer, via coherent population trapping, from an initial state to a designated final state at a designated time in a degenerate 3-level atom, where transitions are caused by an external interaction. Complete population transfer from an initially occupied state 1 to a designated state 2 occurs under two conditions. First, there is a constraint on the ratios of the transition matrix elements of the external interaction. Second, there is a constraint on the action integral over the interaction, or "area", corresponding to the phase shift induced by the external interaction. Both conditions may be expressed in terms of simple odd integers.Comment: 22 pages, 4 figure

    Time-bandwidth problem in room temperature slow light

    No full text
    For many applications of slow or stopped light, the delay-time-bandwidth product is a fundamental issue. So far, however, slow-light demonstrations do not show a large delay-time-bandwidth product, especially in room temperature solids. Here we demonstrate that the use of artificial inhomogeneous broadening has the potential to solve this problem. A proof-of-principle experiment is done using slow light produced by two-beam coupling in a photorefractive crystal CeBaTiO3 where Bragg selection is used to provide the artificial inhomogeneity. Examples of how to generalize this concept for use with other room temperature slow-light solids are also given

    Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores

    Get PDF
    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 10(7) photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores
    corecore